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Abstract

Many variants of the local binary patterns (LBPs) are widely used for face analysis
due to its simplicity and robustness. However, no one prove that they are opti-
mal in the sense of minimization of the number of codes and minimization of the
classification error. We propose an effective code selection method for the optimal
LBP (OLBP), which is based on the maximization of mutual information (MMI)
between features and class labels. We demonstrate the effectiveness of the proposed
OLBP through many experiments of face recognition and facial expression recog-
nition. Experimental results show that the OLBP outperforms other features such
as LBP, ULBP, and MCT in terms of minimization of the number of codes and
minimization of the classification error.

Key words: Local Binary Pattern, Feature Selection, Optimal LBP, Maximization
of Mutual Information, Face Recognition, Facial Expression Recognition

1 Introduction

Face analysis including face recognition and facial expression recognition is
a very active research area in computer vision, human computer interaction
(HCI), and biometrics. In this field, the local binary patterns (LBPs) have
been widely used as a powerful feature representation method. It has proven
to be highly discriminative due to its invariance to the monotonic gray level
changes [1] and to be highly efficient due to its fast computation. For these
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reasons, many research have been done using the LBPs [2]-[11]. Specifically,
the LBP is one of the most successful representation for the face analysis.

However, the original LBP contains many less informative codes. It is observed
that certain LBP codes, whose transitions from 1 to 0 or 0 to 1 in a circularly
defined code are at most two, have been occurred frequently (more than 90%)
in the natural images. Based on this observation, Ojala et al. [2] proposed
the uniform LBP (ULBP) and applied it to face recognition. Lahdenoia et
al. [4] proposed the symmetry ULBP which reduces the number of codes in
the ULBP using the symmetry level of the code. However, it is not proven
that they are optimal from the viewpoint of minimizing the number of codes
and minimizing the classification error. Maximization of mutual information
(MMI) is a key to guarantee the optimality.

Information theoretic feature selection, which utilizes the maximization of
mutual information (MMI) between feature and class label, has been widely
used for finding the optimal features because it guarantees the minimum clas-
sification error. Battiti [12] proposed the mutual information based feature
selection (MIFS) and Kwak and Choi [13] proposed an improved version of
MIFS (MIFS-U). Both MIFS and MIFS-U tried to find the optimal features
one by one using the MMI. Principe [14] and Korkkola [15] used the steepest
descent method to find the optimal projection basis vectors using the infor-
mation theoretic error measures. Qiu and Fang [16] used the MMI to find
the optimal projection basis vectors, and applied them to the face and car
detection systems.

To find the optimal LBP (OLBP) without redundancy, we propose to use
the information theoretic feature selection method based on the maximization
of mutual information between the codes and the class labels. The proposed
approach to code selection iteratively selects LBP codes which maximize their
mutual information with respect to the class label, conditioned on any features
previously selected.

This paper is organized as follows. Selection 2 describes the non-parametric
local kernel based image representation such as LBP, ULBP, and MCT. Section
3 describes the MMI-based feature selection method. Section 4 describes a
way of finding the optimal LBP (OLBP) codes using the MMI-based feature
selection method. Section 5 explains the experimental results to demonstrate
the effectiveness of the proposed OLBP in terms of minimizing the number
of codes and minimizing the classification error. Finally, section 6 draws our
conclusion.
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2 Non-parametric local kernel based image representation

The original LBP [1] uses a 3 by 3 kernel that summarizes the local structure
of an image. At a given pixel position (xc, yc), it takes the 3 by 3 neighborhood
pixels surrounding of the given pixel and generates a binary 1 if the neighbor of
the given pixel has a value greater than or equal to the given pixel or a binary
0 if the neighbor of the given pixel has a value smaller than the given pixel.
The decimal form of the resulting 8-bit word (LBP code) can be expressed

LBPP,R(xc, yc) =
7∑

n=0

δ(in − ic)2
n, (1)

where ic is a pixel value positioned at (xc, yc), in is one of the eight surrounding
pixel values, and function δ(·) is defined such that

δ(x) =





1, if x ≥ 0,

0, otherwise.
(2)

The subscripts P and R represent the number of neighboring pixels and the
radius in multi-scale LBP, respectively [2]. For an example, LBP8,2 denotes
the LBP with 8 equally spaced pixels on a circle of radius 2.

Liao et al. [8] proposed the multi-scale block LBP (MB-LBP). It captures an
n by n block-based local structure rather than pixel-based local structure so
that it is less sensitive to noisy information.

Ojala et al. [2] observed that the natural images generally contain a small
number of LBP codes, which are called the uniform LBP (denoted by super-
script LBP u2). ULBP contains two bitwise 0 to 1 or 1 to 0 transitions at most.
These uniform patterns mainly represent the majority of micro structures such
as lines, edges, and corners.

Lahdenoia et al. [4] proposed a method for reducing the number of the codes
in the ULBP using the level of symmetry Lsym of ULBP, which is expressed
as

Lsym = min
[ P∑

i=1

B(i),
P∑

i=1

B(i)
]
, (3)

where the first and second term are the number of neighboring pixels with
a binary value 1 and 0 in ULBP, respectively. They observed that the codes
with high level of Lsym are more discriminative than those with low level of
Lsym by qualitative visual inspection.

Zabih et al. [17] proposed the census transform (CT) that summarizes the
local image structure as a bit string, where it is 0 if the intensity value at
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a position in one image is less than the intensity value at the corresponding
position in another image. This census transform has been extended to the
modified census transform (MCT) [18] as

ΓMCT (xc, yc) =
8∑

n=0

δ(in − īc)2
n, (4)

where īc denotes the mean of pixel values in a 3 by 3 local kernel positioned at
(xc, yc), and in is one of the nine pixel values in the local kernel. The function
δ(·) is the same as Eq. (2). MCT can be referred to as an enlarged version of
the original LBP, which means one pixel in the image is represented by 9 bit
length. Hence, the number of codes is 512 in MCT while it is 256 in the LBP.

Fig. 1 illustrates that the LBP, ULBP, and MCT are invariant to the monotonic
gray level changes.
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Fig. 1. Robustness to the monotonic gray level changes: (a) original image, (b) LBP,
(c) ULBP, and (d) MCT.

3 MMI-based feature selection

Maximization of mutual information (MMI) is a powerful way of selecting
the optimal feature that minimizes both the lower and upper bound of the
Bayes error, simultaneously. Let X ∈ ND×N be a data matrix, where D is
the number of training images and N is the feature size of each training
image. Let F = {f1, . . . , fN} and C be a discrete valued random variable for
representing features and class labels, respectively. Fig. 2 illustrates a typical
example of the data matrix X, where T is a set of training samples as T =
{(f1, C), . . . , (fN , C)}.

Let a function be G(F ) = Ĉ, where Ĉ is an estimate of C and the C has the
class labels as ν = {1, . . . , Nc}, where Nc is the total number of classes. Then,
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Fig. 2. A typical example of representing data matrix X.

the lower and upper bounds of Bayes error probability Pe , P (Ĉ 6= C) are
proven by Fano [19] and Hellman and Raviv [20] as

H(C)− I(C; F )− 1

log |ν| ≤ Pe ≤ 1

2

(
H(C)− I(C; F )

)
, (5)

where H(·) denotes entropy, I(·; ·) denotes mutual information, and |ν| is the
number of classes. The Bayes error probability Pe can be directly reduced by
maximizing mutual information. From Eq. (5), we know that the maximization
of mutual information (MMI) is equivalent to the minimization of the Bayes
error probability. Also, we know that the maximization of mutual information
(MMI) is equivalent to the minimization of the conditional entropy H(C|F ),
since I(C; F ) = H(C) − H(C|F ). Therefore, the optimal feature selection
problem can be formulated as





arg maxfi∈F I(C; fi)

or

arg minfi∈F H(C|fi)

, ∀i = {1, . . . , N}. (6)

Since we need to find k features in a real application, Eq. (6) is modified as

arg max
fi∈F

I(C; f1, f2, . . . , fk), k ¿ N. (7)

However, it is impossible to compute a joint mutual information Eq. (7) practi-
cally, because all possible combinations of feature sets is huge (the exact num-
ber of possible subsets of selected features is N !

(N−k)!k!
). To overcome this prob-

lem, many researchers tried to find the approximated solutions. Battiti [12]
proposed an iterative greedy feature selection strategy called ‘Mutual Informa-
tion Feature Selection (MIFS)’. He used the greedy feature selection criterion
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as

arg max
fi∈F


I(C; fi)− β

∑

fs∈S

I(fs; fi)


, (8)

where fi is a candidate feature in the feature set F , fs is a previously selected
feature, S is a set of the previously selected features, and β is a regularization
parameter that adjusts the amount of redundance between the candidate fea-
tures fi and previously selected features fs. Table 1 shows a typical algorithm
of the MIFS method.

Table 1
Battiti’s MIFS method.
1. Initialization

(1) S ← φ.

2. Computation of the Mutual Information

(1) argmaxfi∈F I(C; fi).

3. Selection of the first feature

(1) F ← F \ {fi}, S ← {fi}.
4. Greedy Selection

repeat until |S| = k

(1) For all pairs (fi, fs) with fi ∈ F and fs ∈ S,

select the feature fi ∈ F using Eq. (8).

(2) Set F ← F \ {fi}, and S ← {fi}.
end

Kwak et al. [13] proposed the MIFS-U method that modifies the selection
criterion as

arg max
fi∈F


I(C; fi)− β

∑

fs∈S

I(C; fs)

H(fs)
I(fs; fi)


. (9)

Peng et al. [21] proposed a modified MIFS method that uses the max-relevance
and min-redundancy (mRMR) criterion as

arg max
fi∈F


I(C; fi)− 1

|S|
∑

fs∈S

I(fs; fi)


, (10)

where |S| is the cardinality of the set S.

Estevez et al. [22] proposed another modified MIFS method that uses the
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selection criterion as

arg max
fi∈F


I(C; fi)− 1

|S|
∑

fs∈S

NI(fi; fs)


, (11)

where NI is the normalized mutual information such that

NI(fi; fs) =
I(fi; fs)

min{H(fi), H(fs)} . (12)

4 MMI-based OLBP code selection

We applied the MMI-based feature selection method to find the OLBP code.
In this work, we took the Peng’s modified MIFS method that used the max-
relevance and min-redundancy (mRMR) as the selection criterion because it
showed outstanding classification performance than the other iterative feature
selection methods [23,24]. Fig. 3 shows a procedure of the proposed MMI-
based OLBP code selection method, which consists of three consecutive stages.
A detailed explanation about the MMI-based OLBP code selection is given
below.

4.1 Stage I: MMI-based feature reduction

Suppose that we have a set of D training images with Nc classes, each of the
images has a size of N = h × w. All training images are transformed into
LBP features. Then, we have a LBP feature matrix with a size of D × N ,
FLBP = {f1, f2, . . . , fN}, where fi is a D dimensional LBP feature vector at
the ith pixel position.

We compute the mutual information I(C; fi) between the class label C and the
feature vector fi for i = 1, 2, . . . , N and then obtain the selected feature index
set SLBP = {p1, p2, . . . , pM} using the maximization of the mutual information
given in Eq. (10), where M is the number of selected LBP feature vectors
and the pi denotes the index of the selected LBP feature vector at the ith
iteration. Thus, we have a reduced LBP feature matrix with a size of D×M ,
F ′

LBP = {fp1 , fp2 , . . . , fpM
}, where fpi

is a D dimensional LBP feature vector
at the pith pixel position. Because M ¿ N , we reduce the dimensionality
of the original LBP feature matrix with removing less discriminative features
greatly.

Fig. 4 shows two examples of the feature dimensionality reduction using the
MMI-based feature reduction method on the POSTECH Face 2007 database
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Fig. 3. Procedure of the proposed MMI-based OLBP code selection method.
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(PF07) [25], where the horizontal axis denotes the number of selected features.
Discriminative components of a face are eyes, eyebrows, and mouth because
the selected features mainly contain information about them.

Number of selected features
 .


40
 80
 120
 160
 200
 240


(b)


(a)
(a)


Fig. 4. Examples of feature dimensionality reduction using (a) face recognition data
and (b) facial expression data on PF07.

4.2 Stage II: Feature transformation

Each row of the reduced LBP feature matrix F ′
LBP is a LBP transformed

training image with the reduced size of M . Each of the dimensionality reduced
training image is transformed into a histogram of LBP (We call it histogram
transformation). Then, we have a LBP code frequency matrix with a size of
D × 256, FCODE = {l0, l1, . . . , l255}, where li is a D dimensional LBP code
frequency vector at a specific LBP code i. Hence, the jth column of li has the
number of pixels whose LBP code is i in the jth training image.

4.3 Stage III: MMI-based code selection

We again compute the mutual information I(C; li) between the class label C
and the LBP code frequency vector li for i = 0, 1, . . . , 255 and then obtain
the selected LBP code frequency set SCODE = {c1, c2, . . . , cK} using the max-
imization of the mutual information given in Eq. (10), where K is the number
of the selected LBP code frequency vectors and the ci is the index of the se-
lected LBP frequency vector at the ith iteration. Therefore, SCODE is OLBP
codes we want to find.

Fig. 5 shows examples of four transformed images using the OLBP codes
that are obtained from the MMI-based OLBP code selection method. The
horizontal axis denotes the number of the OLBP codes. From the Fig. 5, we can
represent many local structures in more detail as the number of OLBP codes
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increases up to 40. However, we cannot observe a significant improvement of
representing local structures in more detail after the number of OLBP codes
exceeds 40. From this, we know that there exists an optimal number of LBP
codes from the viewpoint of the number of OLBP codes and the classification
error.

10
 20
 40
 60
 80


Number of selected features
.


Fig. 5. Some examples of the OLBP transformed images.

5 Experimental results and discussion

To validate the effectiveness of the proposed MMI-based OLBP code selection
method, we performed two types of experiments: face recognition and facial ex-
pression recognition. In these experiments, all input images were transformed
using the OLBP that is obtained by the proposed MMI-based OLBP code se-
lection method. We did not use any preprocessing methods or postprocessing
methods to show that effectiveness of only the proposed method in terms of
a number of codes and classification performance.

5.1 Database and experimental setting

We used the PF07 database 2 [25], which consists of 100 male and 100 female
subjects with 320 images per subject. The 320 images has a size of 40 × 50

2 The PF07 database is available on the web, http://imlab.postech.ac.kr
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that includes consist 4 facial expressions, 16 illuminations, and 5 poses. Fig.
6 shows some example images of the PF07 database. All of these images are
aligned according to the two eye locations, which are obtained manually. This
database can be directly used for our experiment without any preprocessing
or manual labelling.
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Fig. 6. Example images of PF07.

5.2 Face recognition

For the experiments of face recognition, we prepared a training set, three
probe sets, and a gallery set as follows. The training set consisted of 32000
randomly selected images (= 100 persons × 16 different illuminations × 4
different facial expressions × 5 different poses). The three probe sets consisted
of three differently conditioned image sets such as illumination changes, pose
changes, and facial expression changes. First, illumination conditioned probe
set consisted of 1500 images (=100 persons × 15 non-normal illuminations ×
the neutral expression × the frontal pose). Second, pose conditioned probe
set consisted of 500 images (=100 persons × the normal illumination × the
neutral expression × 4 non-frontal poses). Third, facial expression conditioned
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Fig. 7. Overall process of the face recognition.

probe set consisted of 300 images (=100 persons × the normal illumination ×
3 non-neutral facial expressions × the frontal pose). A gallery set consisted of
100 images (=100 persons × the normal illumination × the neutral expression
× the frontal pose). Hence, we performed three different experiments with a
pair of both each probe set and the gallery set. To validate generality of
the proposed method, individuals composing each training set and probe set
were selected exclusively. However, the three probe sets and the gallery set
contained same individuals.

Fig. 7 illustrates the overall process of the face recognition experiment, which
consists of three stages.

1. Training stage
We obtained the LBP transformed images by converting the training im-
ages with LBP and found the K OLBP codes using the MMI-based OLBP
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code selection method in the section 4. In this experiment, we empirically
reduced the dimensionality of the training images from 2,000 to 240 in the
MMI-based feature reduction stage. The 240 features included some dis-
criminative facial components such as eyes, eyebrows, mouth, and nose (See
Fig. 4).

2. Enrollment stage
We transformed the gallery images into the OLBP transformed gallery im-
ages by the OLBP codes which are obtained in the training stage. Then,
we converted the OLBP transformed gallery images into a set of gallery
feature vectors using the spatially enhanced histogram method [5], which is
explained as follows. (1) Each OLBP transformed gallery image was divided
into 30 local regions Ri, i = 1, ..., 30, (We empirically divided the image into
30 regions.) (2) the OLBP histograms of 30 local regions were computed
independently in each OLBP transformed gallery image, and (3) the gallery
feature vector was obtained by concatenating the OLBP histograms of 30
local regions sequentially.

3. Recognition stage
We transformed the probe image into the OLBP transformed probe image
by the OLBP codes. We converted the OLBP transformed probe image into
a probe feature vector computed by the same method in the enrollment
stage. Then, we measured the weighted χ2 distance between the probe fea-
ture vector (FPk,l

) and gallery feature vectors (F i
Gk,l

, i = 1, . . . , NG, NG =

{1500, 500, 300}) to find the best matched gallery image as

arg min
i


χ2

w

(
FPk,l

, F i
Gk,l

)
, ∀i, (13)

where the weighted χ2 distance is computed as

χ2
w

(
FPk,l

, F i
Gk,l

)
=

∑

k,l

wk

(
FPk,l

− F i
Gk,l

)2

(
FPk,l

+ F i
Gk,l

) , (14)

where the indices l and k refer to lth bin in a histogram corresponding to
the kth local region. wk is the weight for region k. We empirically set the
weights wk.

The classification error for the face recognition could be computed such that

Classification error (%) =


1− NCRI

NG


× 100, (15)

where NCRI and NG is # of correctly recognized images and # of gallery im-
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Fig. 8. Comparison of classification errors for face recognition among four different
representation methods using the illumination conditioned probe set and the gallery
set.

ages, respectively. Fig. 8 compares the classification errors of face recognition
using the illumination conditioned probe set and the gallery set among four
different representation methods such as OLBP, ULBP, LBP, and MCT when
the number of OLBP codes changes, where the horizontal axis denotes the
number of OLBP codes. From the Fig. 8, we noticed that the classification
error decreases drastically as the number of OLBP codes increases up to 23,
and does not change much as the number of OLBP codes increases from 23
to 59. From the viewpoint of the number of codes and the classification er-
ror, the best number of OLBP code was 31. The classification error using 31
OLBP codes was 16.00%, which is the smallest than those of other represen-
tation methods such as ULBP (18.73%), LBP (18.07%), and MCT (18.07%).
Fig. 9 compares the classification errors of face recognition using the pose
conditioned probe set and the gallery set among four different representation
methods such as OLBP, ULBP, LBP, and MCT when the number of OLBP
codes changes, where the horizontal axis denotes the number of OLBP codes.
From the Fig. 9, we noticed that the classification error decreases drastically
as the number of OLBP codes increases up to 19, and does not change much as
the number of OLBP codes increases from 19 to 59. From the viewpoint of the
number of codes and the classification error, the best number of OLBP code
was 27. The classification error using 27 OLBP codes was 14.75%, which is the
smallest than those of other representation methods such as ULBP (19.00%),
LBP (20.25%), and MCT (20.25%). Fig. 10 compares the classification errors
of face recognition using the facial expression conditioned probe set and the
gallery set among four different representation methods such as OLBP, ULBP,
LBP, and MCT when the number of OLBP codes changes, where the hori-
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Fig. 9. Comparison of classification errors for face recognition among four different
representation methods using the pose conditioned probe set and the gallery set.

zontal axis denotes the number of OLBP codes. From the Fig. 10, we noticed
that the classification error decreases drastically as the number of OLBP codes
increases up to 19, and does not change much as the number of OLBP codes
increases from 19 to 59. From the viewpoint of the number of codes and the
classification error, the best number of OLBP code was 35. The classification
error using 35 OLBP codes was 18.16%, which is the smallest than those of
other representation methods such as ULBP (21.50%), LBP (20.83%), and
MCT (20.83%).

Optimal LBP codes gave reduced recognition time. In Ahonen’s face recog-
nition method [5], recognition time is totally dependent on the χ2 distance
based matching Eq. (16). Time complexity of Eq. (16) is represented as a lin-
ear function O(l), where O(·) denotes Big-O function whose parameter l is the
dimension of the feature vector. More specifically, l = R × B, where R is the
number of local regions, and B is the number of bins per region. Reducing the
number of codes gives reducing the number of bins per region. Therefore, we
can expect that if we reduce the original number of codes B to B′, we reduce
the operation as an amount of R×(B−B′). Fig. 11 compares the computation
times of face recognition using the illumination conditioned probe set and the
gallery set among four different representation methods such as OLBP, ULBP,
LBP, and MCT when the number of OLBP codes changes, where the horizon-
tal axis denotes the number of OLBP codes. From the Fig. 11, we noticed that
the computation time increases almost linearly as the number of OLBP codes
increases. The recognition time using 31 OLBP codes was 3.26 seconds, which
is the smallest than those of other representation methods such as ULBP (4.95
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Fig. 10. Comparison of classification errors for face recognition among four different
representation methods using the facial expression conditioned probe set and the
gallery set.

seconds), LBP (15.65 seconds), and MCT (43.07 seconds). Hence, if we use
31 OLBP codes, we can reduce the computation time by about 1.5 times, 5
times, and 13 times when ULBP, LBP, and MCT are used respectively.
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Fig. 11. Comparison of computation times for face recognition among four different
representation methods using the illumination conditioned probe set and the gallery
set.
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Fig. 12. Overall process of the facial expression recognition.

5.3 Facial expression recognition

For the experiments of facial expression recognition, we prepared the training
and test image set as follows. First, we prepared 800 randomly selected images
(= 200 persons × a normal illumination × 4 different facial expressions × a
frontal pose). Among 800 images, we selected 700 images (= 175 persons × a
normal illumination × 4 facial expressions × a frontal pose) for the training
image set and selected the remaining 100 images (= the remaining 25 persons
× a normal illumination × 4 facial expressions × a frontal pose) for the test
image set. We performed 8-fold cross validation method to avoid the data
tweak problem.

Fig. 11 illustrates the overall process of the facial expression recognition ex-
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periment, which consists of two stages.

1. Training stage
We obtained the LBP transformed images by converting the training im-
ages with LBP and found the K OLBP codes using the MMI-based OLBP
code selection method in the section 4. In this experiment, we empirically
reduced the dimensionality of the training images from 2,000 to 240 in
the feature reduction stage. This 240 features included discriminative facial
components such as eyes, eyebrows, and mouth (See Fig. 4). We converted
the LBP transformed training images into the OLBP transformed training
images by using the obtained K OLBP codes. Then, we converted the OLBP
transformed training images into a set of training feature vectors using the
spatially enhanced histogram method [5], which is the same as the method
in section 5.2. Finally, we obtained four person-independent feature vectors,
one per facial expression, by averaging all training feature vectors with a
specific facial expression [10].

2 Recognition stage
We transformed the input image into the OLBP transformed input im-
ages by the K OLBP codes. We converted the OLBP transformed train-
ing images into a input feature vector using the spatially enhanced his-
togram method [5], which is the same as the method in the section 5.2.
Finally, we measured the χ2 distance between the input feature vector
(FI) and the person-independent feature vectors of four facial expressions
(Fe, e ∈ {netural, happy, surprised, angry}) to find the best matched facial
expression such that

arg min
e


χ2

(
FI , Fe

)
, ∀e, (16)

where the χ2 distance is computed as

χ2
(
FI , Fe

)
=

∑

l

(
FI(l)− Fe(l)

)2

(
FI(l) + Fe(l)

) , (17)

where l is the component index of the feature vector FI and Fe.

To get a reliable facial expression recognition performance, we performed the
8-fold cross validation method. In ith trial (i = 1, . . . , 8), we had 100 test input
images, 25 images for each facial expression and we counted the number of
correctly recognized images in facial expression. Then, the classification error
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Fig. 13. Comparison of classification errors for facial expression recognition among
four different representation methods.

for the facial expression recognition could be computed such that

Classification error (%) =


1− 1

8

8∑

i=1

NCRIi

NTi


× 100, (18)

where NCRIi and NTi is # of correctly recognized images at the ith trial, and #
of ith set of test images, respectively. Fig. 13 compares the classification errors
of facial expression recognition among four different representation methods
such as OLBP, ULBP, LBP, and MCT when the number of OLBP codes
changes, where the horizontal axis denotes the number of OLBP codes. From
the Fig. 13, we noticed that the classification error decreases drastically as the
number of OLBP codes increases up to 23, and does not change much as the
number of OLBP codes increases from 23 to 80. From the viewpoint of the
number of codes and the classification error, the best number of OLBP code
was 23. The classification error using 23 OLBP codes was 8.00%, which is the
smallest than those of other representation methods such as ULBP (12.73%),
LBP (14.20%), and MCT (15.07%).

In this facial expression recognition, the time complexity is the same as the
face recognition experiments because the χ2 distance is used for finding correct
matching. Fig. 14 compares the computation times of face recognition among
four different representation methods such as OLBP, ULBP, LBP, and MCT
when the number of OLBP codes changes, where the horizontal axis denotes
the number of OLBP codes. From the Fig. 14, we noticed that the computa-
tion time increases almost linearly as the number of OLBP codes increases.
The recognition time using 23 OLBP codes was 0.5928 seconds, which is the
smallest than those of other representation methods such as ULBP (0.8892
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seconds), LBP (2.3088 seconds), and MCT (4.3056 seconds). Hence, if we use
23 OLBP codes, we can reduce the computation time by about 1.5 times, 4
times, and 7.2 times when ULBP, LBP, and MCT are used respectively.
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Fig. 14. Comparison of computation times for facial expression recognition among
four different representation methods.

In previous facial expression recognition experiment, we used only randomly
selected 10 person’s images (=800 images). To validate the effectiveness of
the proposed OLBP more reliably than the previous one, We performed an-
other facial expression recognition experiment with large-scale data. We pre-
pared 12800 facial expression images (12800 images = 4 different facial ex-
pressions × 200 persons × 16 different illuminations × a frontal pose). We
divided the images into two sets. Each set contained 4 facial expression im-
ages with 200 person’s face images × 8 different illuminations × a frontal
pose. Between these two sets, one set was used to find OLBP codes (train),
another set was used for test images. Overall procedure of this experiment
was similar to the previous experiment (See Fig. 12), however distance mea-
sure slight differed from that of the previous experiment. In this experi-
ment, we measured the weighted χ2 distance between the input feature vec-
tor (FI) and the person-independent feature vectors of four facial expressions
(Fe, e ∈ {netural, happy, surprised, angry}) to find the best facial expression
such that

arg min
e


χ2

w

(
FIk,l

, Fek,l

)
, ∀e, (19)
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where the weighted χ2 distance is computed as

χ2
w

(
FIk,l

, Fek,l

)
=

∑

k,l

wk

(
FIk,l

− Fek,l

)2

(
FIk,l

+ Fek,l

) , (20)

where the indices l and k refer to lth bin in a histogram corresponding to the
kth local region. wk is the weight for region k. We empirically divided each face
image into 30 blocks (k = 1, . . . , 30), and empirically set the weights wk. We
used 2-fold cross validation method. Then, classification error was similarly
computed as Eq. (18).
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Fig. 15. Comparison of facial expression recognition for 100 person’s facial expression
among four different representation methods.

Fig. 15 compares the classification errors of 100 person’s facial expression
recognition among four different representation methods such as OLBP, ULBP,
LBP, and MCT when the number of OLBP codes changes, where the hori-
zontal axis denotes the number of OLBP codes. From the Fig. 15, we noticed
that the classification error decreases drastically as the number of OLBP codes
increases up to 27, and does not change much as the number of OLBP codes
increases from 27 to 59. From the viewpoint of the number of codes and the
classification error, the best number of OLBP code was 39. The classifica-
tion error using 39 OLBP codes was 8.31%, which is the smallest than those
of other representation methods such as ULBP (11.8%), LBP (13.86%), and
MCT (16.16%). In this case, we needed more OLBP codes than the previous
facial expression recognition (See Fig. 13), because database was much more
complicated than that used in the 10 person’s facial expression recognition
experiment.
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6 Conclusion

This paper proposed the MMI-based code section method for the optimal LBP,
which provides the improved recognition performance and the reduced recog-
nition time, simultaneously. Because the maximization of mutual information
(MMI) between feature and class label assures the minimal classification error,
we selected the codes of the optimal LBP iteratively, in the order of mutual
information per code.

The proposed OLBP code selection method consisted of three stages: MMI-
based feature reduction, feature transformation, and MMI-based code selec-
tion. In the first stage, we reduced the dimensionality of training images using
mutual information. The selected LBP feature vectors were the most discrimi-
native than any other remaining features. In the second stage, the dimension-
ality reduced training images were transformed into histograms of LBP by the
histogram transformation. Then, we had a LBP code frequency matrix. Each
column vector of the matrix represented a feature vector of corresponding
LBP code. In the last stage, we selected several LBP code frequency vectors
using MMI-based code selection, and then we finally could get the indices of
the selected LBP frequency vectors.

To validate the effectiveness of the MMI-based OLBP code selection method,
We applied it to two applications: face recognition and facial expression recog-
nition. First, in face recognition experiments, we used three differently con-
ditioned probe sets, the illumination conditioned probe set, the pose condi-
tioned probe set, and the facial expression conditioned probe set. In the first
experiment, the best number of OLBP codes was 31. The classification error
using 31 OLBP codes was 16.00%, which is the smallest than those of other
representation methods such as ULBP (18.73%), LBP (18.07%), and MCT
(18.07%). We showed that if we use the 31 OLBP codes, we can reduced the
computation time by about 1.5 times, 5 times, and 13 times when ULBP,
LBP, and MCT were used respectively. In the second experiment, the best
number of OLBP codes was 35. The classification error using 35 OLBP codes
was 13.00%, which is the smallest than those of other representation meth-
ods such as ULBP (19.00%), LBP (20.25%), and MCT (20.25%). In the third
experiment, the best number of OLBP codes was 35. The classification error
using 35 OLBP codes was 22.60%, which is the smallest than those of other
representation methods such as ULBP (30.00%), LBP (29.33%), and MCT
(29.33%).

In the facial expression recognition experiments, the best number of OLBP
codes was 23. The classification error using 23 OLBP codes was 8.00%, which
is the smallest than those of other representation methods such as ULBP
(12.73%), LBP (14.20%), and MCT (15.07%). Moreover, we showed that if
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we used the 23 OLBP codes, we can reduced the computation time by about
1.5 times, 4 times, and 7.2 times when ULBP, LBP, and MCT were used
respectively. From these experimental results, we concluded that the OLBP
outperform other features such as LBP, ULBP, and MCT in terms of the
number of codes, the classification error, and the computation time.
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